[ 考題 106 年政大商學院 ]
Consider an economy in which production is characterized by the neoclassical function Y=K0.5N0.5, where Y , K and N denote the output, capital stock and quantity of labor, respectively.
Suppose that it has a saving rate of 0.1, a population growth rate of 0.02, and an average depreciation rate of 0.03.
(1) Write this production function in per capita form in which y=Y/N and k=K/N, and find the steady-state value of y and k.
(2) At the steady-state value of k , is there more or less capital than at the golden-rule level?
(3) Determine what saving rate would yield the golden-rule level of capital in this model.
(4)In the context of this neoclassical growth model, can a country have too much saving?
[ 解答 ] 經濟成長的考題基本上是總體經濟學的必考題,穩定均衡與黃金法則成長,兩者則是同學必須要會求解的兩種解題技巧。
(1) 由生產函數Y=K0.5N0.5同除以人口 N ,可求得人均的生產函數 Y=K0.5,而 steady-state 條件為 ,則0.1.k0.5=(0.02+0.03).k,可求得
(2) 求黃金法則下的資本存量,其條件為 ,則 0.5.k0.5=(0.02+0.03),可求得
(3) 承上題,求黃金法則下對應的儲蓄率,將 代入 steady-state 條件 ,可得
(4) 在本題中初始的儲蓄率 0.1 低於黃金法則下的儲蓄率 0.5 ,故並非儲蓄過多,而是儲蓄過少。
- 面授課程:高普考
- 雲端課程:經濟學、公共經濟學、財政學、租稅各論
- 考試用書:經濟學(概要)、經濟學測驗題完全制霸、財政學大意歷屆試題分章題解