《靜力學與材料力學》

一、如圖 1 所示之二分之一圓弧形桿件,O 點為圓心,半徑 R=4 m,a 點及 c 點為鉸支承,b 點為鉸接,角度 $\theta=45^{\circ}$,載重 P=10 kN、F=10 kN。分別求 a、c 點鉸支承反力的水平與垂直分量,及桿件在 e 點的彎矩、剪力與軸力。(25 分)

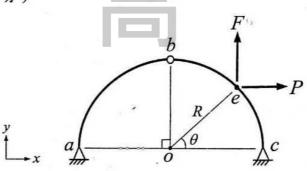
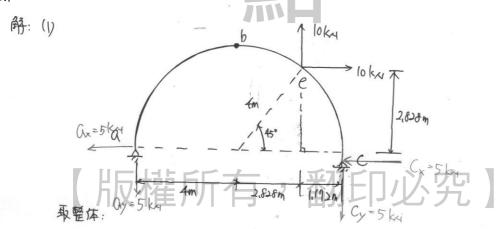



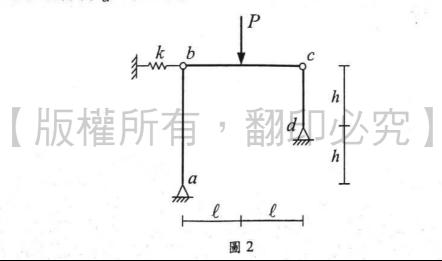
圖 1

試題評析 此題為靜定桁架靜力分析,屬於基本簡單題型。

考點命中 《高點土木突破靜力學教材》P2-89題目一樣!


解:

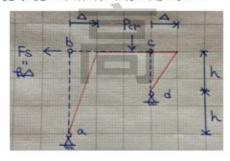
ZMa=0 t)


坂ab段:

(7), 取(尺段分初:

ZMe=0 => Me=5×1/112+5×2,828=20 (ku-u) (G)

二、如圖 2 所示構架,桿 ab、桿 bc 及桿 cd 為剛性桿件,a點及 d 點為鉸支承,b點及 c 點為鉸接,彈簧係數 k=125 kN/m,長度 $\ell=2$ m、h=3 m。 求臨界挫屈負載 P_{cr} 。(25分)



試題評析	本題屬剛性系統求臨界載重Pcr題型,比較麻煩的是要先畫出各分離體圖,抽
	絲剝繭後再由力平衡得到臨界載重值。
	1.《國考材料力學重點暨題型解析-下冊》,高點文化出版,程中鼎編著,例題
考點命中	9.1.3 •
	2.《高點材料力學講義》,程中鼎編著,例題9.1.4。

解:

1.给予系統一微小擾動

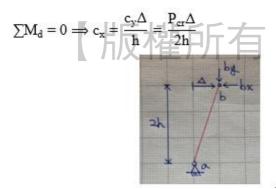
剛體受微小擾動後如下圖所示,因剛體結構不會產生**彎曲**變形故變形後各桿 仍保持(斜)直線,假設變形後上段梁桿件有側移為Δ。

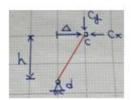
2.計算桿上各內力值

b點直線彈簧內力 $F_s = (k)(\Delta)(拉力)$ 。接著將bc桿殺自由體單獨拿出來作分析, 令b點鉸接內力為 b_x 與 b_y 、c點鉸接內力為 c_x 與 c_y 。分別對b點與c點取力矩平衡可

得到cy與by:

$$\sum M_b = 0 \Longrightarrow c_y = \frac{P_{cr}}{2}$$

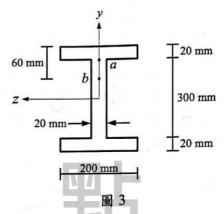

$$\sum M_c = 0 \implies b_y = \frac{P_{cr}}{2}$$


接著取出桿件ab段(已微小擾動),對下方a點取力矩平衡可得到bx:

$$\sum M_a = 0 \implies b_x = \frac{b_y \Delta}{2h} = \frac{P_{cr} \Delta}{4h}$$

再取出桿件cd段(已微小擾動),對下方d點取力矩平衡可得到cx:

翻印必究】



3.由靜力平衡式求臨界載重Per

最後由桿件bc段(已微小擾動)水平方向力平衡得到臨界載重Pcr:

$$\sum F_x = 0 \Longrightarrow F_s = b_x + c_x \Longrightarrow k\Delta = P_{cr}(\frac{3\Delta}{4h}) \Longrightarrow P_{cr} = \frac{4kh}{3} = \frac{4(125)(3)}{3} = \underline{500 \ kN}$$

三、如圖 3 所示工型斷面之直樑,材料之彈性模數 E=240 GPa。當工型斷面承受 $M_z=24$ kN·m 彎矩及 $V_y=12.5$ kN 剪力作用,求此時樑中性軸曲率半徑、 α 點正向應力 σ_r 及 b 點剪應力 τ_r 。(25 分)

試題評析	屬於簡單梁應力分析題型,不要按錯計算機就會得分。
	1.《國考材料力學重點暨題型解析-上冊》,高點文化出版,程中鼎編著,例題
考點命中	4.2.6 °
	2.《高點材料力學講義》,程中鼎編著,例題4.2.9。

解:

1.計算中性軸曲率半徑p

$$z$$
 軸慣性矩 $I_z=\frac{1}{12}(200\times340^3-180\times300^3)=250.067\times10^6 \text{ mm}^4$ 曲率半徑 $\rho=\frac{1}{\kappa}=\frac{EI_z}{M_z}=\frac{(240\times10^3)(250.067\times10^6)}{24\times10^6}=2500670 \text{ mm}=\frac{2500.67 \text{ m}}{2}$ 2.a點正向應力 σ_x

$$\sigma_{x} = \frac{M_{z}y_{a}}{I_{z}} = \frac{(24 \times 10^{6})(150)}{250.067 \times 10^{6}} = \underline{14.396 \text{ MPa}}$$

3.b點剪應力τ_{xy}

$$\tau_{xy} = \frac{V_y Q_b}{I_z b} = \frac{(12.5 \times 10^3)(200 \times 20 \times 160 + 40 \times 20 \times 130)}{(250.067 \times 10^6)(20)} = \underline{1.860 \text{ MPa}}$$

四、某點平面應力狀態如圖 4 所示,求其主應力、最大剪應力,及當 $\theta=60^\circ$ 作用在 AB 斜面的應力分量 $\sigma_{x'}$ 與 $\tau_{x'y'}$ 。(25 分)

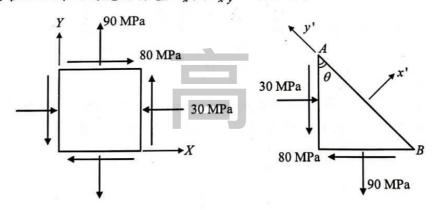


圖 4

屬於簡單應力莫爾圓分析題型,不要按錯計算機與背錯公式就會得分。
1.《國考材料力學重點暨題型解析-下冊》,高點文化出版,程中鼎編著,例題
6.2.1。 2.《高點材料力學講義》,程中鼎編著,例題6.2.2。

解:

1.寫出正向應力σ_x、σ_y及剪應力τ_{xy}值

採用**拉逆為正**符號系統, $\sigma_x = -30 \text{ MPa} \cdot \sigma_y = 90 \text{ MPa} \cdot \tau_{xy} = 80 \text{ MPa}$ 。

2.由應力莫爾圓觀念求主應力與最大剪應力

莫爾圓圓心及半徑計算如下:

園心(
$$\sigma_{avg}$$
,0) = ($\frac{\sigma_x + \sigma_y}{2}$,0) = ($\frac{-30 + 90}{2}$,0) = (30 ,0)
半徑 R = $\sqrt{(\frac{\sigma_x + \sigma_y}{2})^2 + \tau_{xy}^2} = \sqrt{(\frac{-30 - 90}{2})^2 + (80)^2} = 100$

由應力莫爾園可知最大主應力 $\sigma_1 = \mathbf{B} \mathbf{v} + \mathbf{*} \mathbf{Z}$,最小主應力 $\sigma_2 = \mathbf{B} \mathbf{v} - \mathbf{*} \mathbf{Z}$:

最小主應力σ₂ = 圓心 - 半徑 = 30 - 100 = -70 MPa (壓應力)

最大剪應力τ_{max} = 半徑 R = 100 MPa

3.計算 $\theta = 60^{\circ}$ 之AB斜面應力分量 $\sigma_{x'}$ 與 $\tau_{x'y'}$

$$\begin{split} &\sigma_{\theta} = \frac{\sigma_{x} + \sigma_{y}}{2} + (\frac{\sigma_{x} - \sigma_{y}}{2})\cos{2\theta} + \tau_{xy}\sin{2\theta} \\ &\Longrightarrow \sigma_{x'} = \frac{-30 + 90}{2} + (\frac{-30 - 90}{2})\cos{(2 \times 60^{\circ})} + 80\sin{(2 \times 60^{\circ})} = \underline{129.282 \text{ MPa }}(\text{then } \underline{\hbar}) \\ &\tau_{\theta} = -(\frac{\sigma_{x} - \sigma_{y}}{2})\sin{2\theta} + \tau_{xy}\cos{2\theta} \\ &\Longrightarrow \tau_{x'y'} = -(\frac{-30 - 90}{2})\sin{(2 \times 60^{\circ})} + 80\cos{(2 \times 60^{\circ})} = \underline{11.962 \text{ MPa}} \end{split}$$

【版權所有,翻印必究】