《迴歸分析》

試題評析	本年度的試題:除了第一題(三)容易迷失陷阱,比較難拿到15分之外,其他各題都只考公式定義、簡單的運算,因此預估程度中上的同學,分數大概落在70-80分之間,若能考到85分以上,足夠顯示已達上榜水準。
考點命中	第一題:(一)(二)與第二回P54例題2相同,(三)與總複習P67例題9(三)相同 第二題:與第三回P81實例說明相同 第三題:與第三回P63定義、P75例題1相同 第四題:與第一回P92例題2相同 第五題:與第一回P16定理敘述相同

一、在一般迴歸模型及常態誤差假設下,25筆獨立資料所得之配適模型(fitted model)為 $\hat{y} = 2.341 + 1.616x_1 + 0.014x_2$,

及變異數分析(ANOVA)表

`	Source	Sum of Squares	df	F	PR>F
	Model	5550.8	(A)	(D)	0.000
	Error	(B)	(C)		
Cor	rrected Total	5784 5			

- (一)試填入ANOVA表中(A)、(B)、(C)和(D)內之數字。(5分)
- (二)試問上述迴歸模型是否顯著 ($\alpha=5\%$) ? (5分)
- (三)若X為資料中之設計短陣(design matrix),且

$$(X'X)^{-1} = \begin{pmatrix} 0.1132 & -0.00445 & -0.00008 \\ -0.00445 & 0.0027 & -0.00004 \\ -0.00008 & -0.00004 & 0.000001 \end{pmatrix}$$

試檢定 $H_0: \beta_0 = \beta_1 = \beta_2$ vs. $H_1: \beta_i \neq \beta_j$,任意 i,j=0,1,2; i 不等於 j。請寫出檢定統計量之分 布和自由度 ($\alpha=5\%$)。 (臨界值 (critical value) = 3.44。) (15%)

答:

$$(-)$$
(A)2 (B) 5784.5 - 5550.8 = 233.7 (C) n - k = 25 - 3 = 22

$$(D)\frac{5550.8/2}{233.7/22} = 261.27$$

(二)1.
$$\begin{cases} H_0: \beta_1 = \beta_2 = 0 \ (迴歸模型不顯著) \\ H_1: \beta_1 \ , \beta_2$$
不全為0 (迴歸模型顯著)

2. $p - value = 0.000 < \alpha = 0.05$

:: reject H_0 ,有充分證據顯示迴歸模型顯著

 $(\underline{\Xi})H_0 \ \vdots \ \beta_0 = \beta_1 = \beta_2$

$$\Leftrightarrow \ \ H_0: \beta_0 - \beta_1 = 0 \ \ \text{,} \ \beta_1 - \beta_2 = 0 \, \text{,} \ \beta_0 - \beta_2 = 0$$

$$\Leftrightarrow H_0: \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow H_0: \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & -1 \end{bmatrix}_{3\times 3} \cdot \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow H_0: \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}_{2\times 3} \cdot \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow H_0: [C] \cdot [\beta] = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

103年高上高普考 · 高分詳解

$$\begin{array}{l} Cb_F - h = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 2.341 \\ 1.616 \\ 0.014 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.725 \\ 1.602 \end{bmatrix} \\ C(X^TX)^{-1}C^T = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 0.1132 & -0.00445 & -0.00008 \\ -0.00445 & 0.0027 & -0.00004 \\ -0.00008 & -0.00004 & 0.000001 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{bmatrix} \\ & = \begin{bmatrix} 0.1248 & -0.00711 \\ -0.00711 & 0.002781 \end{bmatrix} \\ \begin{bmatrix} C(X^TX)^{-1}C^T \end{bmatrix}^{-1} = \frac{\begin{bmatrix} 0.002781 & 0.00711 \\ 0.0002781 & 0.000711 \end{bmatrix}}{0.0002965167} \\ 1. (1) \begin{cases} H_0 : \beta_0 = \beta_1 = \beta_2 \\ H_1 : \beta_i \neq \beta_j, i, j = 0, 1, 2, i \neq j \end{cases} \\ & \begin{cases} H_0 : \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ & \end{cases} \\ H_1 : \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ & \end{cases} \\ & \end{cases} \\ (2)F = \frac{(Cb_F - h)^T [C(X^TX)^{-1}C^T]^{-1} (Cb_F - h)/S}{SSE(F)/(n-k)} \\ & = \frac{[0.725 & 1.602] \cdot \begin{bmatrix} 0.007211 & 0.12481 \\ 0.0002781 & 0.00711 \\ 0.002711 & 0.12481 \\ 0.0002965167 \end{bmatrix} \cdot \begin{bmatrix} 0.725 \\ 1.602 \end{bmatrix}/2}{0.0002781 & 0.00711 \\ 0.0$$

- 二、迴歸模型中解釋變數間若存在共線性 (multicollinearity) 對估計結果影響甚鉅。變異數膨脹 因子 (variance inflation factor, VIF) 是判斷共線性的一個指標。
 - (一)VIF之意涵為何?試說明VIF和共線性的關係。(10分)
 - (二)某組資料有5個解釋變數 x₁,x₂,x₃,x₄,x₅所得迴歸係數估計結果如下:

Variable	b _j	se	VIF
Intercept	0.830	0.318	
\mathbf{x}_1	-0.012	0.647	$(0.002)^{-1}$
\mathbf{x}_2	0.199	0.483	$(0.001)^{-1}$
\mathbf{X}_3	-0.117	0.178	$(0.010)^{-1}$
\mathbf{x}_4	-0.367	0.294	$(0.008)^{-1}$
X ₅	0.186	0.147	$(0.009)^{-1}$

其中bj為迴歸係數Bj之估計值,se為其標準誤。試評估解釋變數中是否存在共線性? (5分)

答:

一(一)1.定義:
$$VIF_j = \frac{1}{1-R_i^2}$$
:

用來判斷第j個解釋變數與其他解釋變數之間共線性之強弱

2.VIF_i越大 ⇒ 第j個解釋變數與其他解釋變數之間共線性越強

用法:
$$\overline{\text{VIF}} = \frac{\sum_{j=1}^{p-1} \text{VIF}_j}{p-1}$$
 越大 \Rightarrow 迴歸模型共線性越大

103年高上高普考 · 高分詳解

其中:p-1為迴歸模型中解釋變數的個數

- $(\stackrel{\frown}{})$: VIF_i > 1, j = 1,2,3,4,5 \Rightarrow $\overline{\text{VIF}}$ > 1
 - :: 解釋變數之間存在共線性
- 三、在有三個解釋變數之一組資料配適迴歸模型後,得到所有部分集合之變數選擇(all possible subsets selection) 結果如下(bj為迴歸係數Bj之估計值):

p-1	R ²	C_p	b_0	b_1	b_2	b ₃
1	0.032	75. 45	0.77	0.325		
1	0.705	11.85	0.27		1.361	
1	0.707	11.67	-0.36			1.103
2	0.759	8. 79	-0.29	-0.463		1.255
2	0.808	3.12	-0.19		0.781	0.633
2	0.830	2.03	-0.93	0.655	1.487	
3	0.831	4.00	-0.12	0.737	1.589	-0.094

- (一)何謂Cp試說明其意義。(10分)
- (二)由表中結果來看,最佳模型為何?為什麼? (10分)

答:

— (一) $C_P = \frac{SSE_P}{MSE(Full)} - (n-2p)$: 迴歸模型用來搜尋最佳自變數的組合方法,

取 ① Cp值最小者 ②Cp值最接近P值者:即為最佳自變數組合

- (二) $: C_P = 2.03$ 最小,且最接近P = 3
 - ∴ 最佳模型: $Y_i = -0.93 + 0.655X_{i1} + 1.487X_{i2}$
- 四、下述資料為某幼稚園自80年後至90年之幼童入學學費。

1 C X 1 1 1 X 1 1 E E E E E E E E E E E E E										
年	81	82	83	84	85	86	87	88	89	90
80年後之年分,x	1	2	3	4	5	6	7	8	9	10
學費(千元)y	6. 1	6.8	7.5	8. 5	9.3	10.5	11.5	12.625	13.975	14.975

- (-)由(y,x)之散布圖 $(scatter\ plot)$ 發現y和x的關係較接近 $y=\alpha e^{\beta x}$ 。欲得一線性模型,須 將y作何轉換(transformation)?試寫出轉換後的模型。(10分)
- (二)令 z_i 為反應變數 y_i 轉換後的值,且 $\sum_{i=1}^{10} z_i = 22.783$, $\sum_{i=1}^{10} x_i z_i = 133.686$ 。試求 α 和 β 的最小 平方估計量 (least square estimate)。 (10分)
- (三)根據(二)之結果,預測100年時該幼稚園之幼童入學學費。(10分)

 $(-)Y = \alpha e^{\beta x}$

取ln : $lnY = ln\alpha + \beta x + \epsilon$

$$\label{eq:second} \diamondsuit \ Z = \alpha^* + \beta x + \epsilon \quad , \qquad \qquad \sharp \dot + Z = \ln Y \ , \ \alpha^* = \ln \alpha$$

$$(\Box) S_{XZ} = \sum xz - \frac{(\sum x)(\sum z)}{n} = 133.686 - \frac{55 \times 22.783}{10} = 8.3795$$

$$S_{XX} = \sum x^2 - \frac{(\sum x)^2}{n} = 385 - \frac{55^2}{10} = 82.5$$

$$\hat{\beta} = \frac{S_{XZ}}{S_{XX}} = \frac{8.3795}{82.5} = 0.1016$$

$$\hat{\alpha}^* = \bar{z} - \hat{\beta}\bar{x} = \frac{22.783}{10} - 0.1016 \times \frac{55}{10} = 1.7195$$

$$\hat{\alpha}^* = \bar{z} - \hat{\beta}\bar{x} = \frac{22.765}{10} - 0.1016 \times \frac{55}{10} = 1.7195$$

$$\Rightarrow \hat{\alpha} = e^{\hat{\alpha}^*} = 5.5817$$

$$\therefore (\hat{\alpha}, \hat{\beta}) = (5.5817, 0.1016)$$

【版權所有,重製必究!】

103年高上高普考 · 高分詳解

(
$$\equiv$$
) $\widehat{Y} = \widehat{\alpha}e^{\widehat{\beta}x} = 5.5817e^{0.1016x}$
 $\therefore \widehat{Y}_{x=20} = 5.5817e^{0.1016 \cdot 20} = 42.5846$

五、假設 (y_i,x_i) 滿足 $y_i=\beta_0+\beta_1x_{i1}+\cdots+\beta_px_{ip}+\epsilon_i$, $i=1,\ldots,n$ 。令 b_j 為迴歸係數 β_j 之最小平方估計量, $j=0,1,\ldots,p$ 。著名的高斯—馬可夫(Gauss-Markov)定理是對 $\sum_{j=0}^P l_j\beta_j$ 之估計有興趣,其中 \emptyset,\cdots,ℓ_p 是已知的實數。試敘述Gauss-Markov定理及其假設條件。(10分)

答:

Gauss-Markov定理:迴歸模型: $Y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip} + \epsilon_i$

當誤差項ɛ¡滿足:傳統線性迴歸假設

①
$$\mathrm{E} \epsilon_i = 0$$
 , ② $\mathrm{V}(\epsilon_i) = \sigma^2$, ③ $\mathrm{cov}(\epsilon_i, \epsilon_j) = 0$, $i \neq j$

則 OLSE $\sum_{j=0}^p l_j b_j$ 為 $\sum_{j=0}^p l_j \beta_j$ 之BLUE(Best Linear Unbiased Estimator)

【版權所有,重製必究!】