《統計學概要》

- 、甲、乙進行擲骰子比賽,兩人同時各擲一個公正骰子,若擲出的點數相差 1 或 2 時,則甲贏得 比賽,比賽結束;若擲出的點數相差3、4或5時,則乙贏得比賽,比賽結束;若點數相同時, 則兩人再擲一次,直至分出勝負才停止比賽。假設Х表示兩人擲出的點數差。
 - (一)請列出 *X* 的機率分配。(10 分)
 - (二)計算X的期望值。(5分)
 - (三)試求比賽只進行一次投擲就結束的機率。(5分)
 - (四)試求甲在第二次投擲時贏得比賽的機率。(5分)

本題是考驗考生如何產生一個隨機變數,然而題目的遊戲並不複雜,且隨機變數的意義也很明 試題評析 瞭,故要拿到滿分不難。

考點命中 《高點·高上統計學講義》第二回, 趙治勳編撰。

答:

 $\Rightarrow X_1, X_2$ 分別表甲與乙投出之點數, $X_1, X_2 \stackrel{iid}{\sim} DU(1,6)$

 $X = \mid X_1 - X_2 \mid$

	$X = \mid X_1 - X_2 \mid$		X_2						
			1	2	3	4	5	6	
		1	0	1	2	_3	4	5	
		2	1	0	1	2	3	4	
	X_1	3	2	1	0	1	2	3	
	$\boldsymbol{\Lambda}_1$	4	3	2	1	0	5 6 4 5 3 2 2 3 1 2 0 3	2	
		5	4	3	2	1		1	
		6	5	4	3	2	1	0	

由上表可得X之機率分配如下:

X = x	0	1	2	3	4	5
$f_X(x)$	$\frac{6}{36}$	$\frac{10}{36}$	$\frac{8}{36}$	$\frac{6}{36}$	$\frac{4}{36}$	$\frac{2}{36}$

- $(\Xi) E(X) = 0 \times \frac{6}{36} + 1 \times \frac{10}{36} + 2 \times \frac{8}{36} + 3 \times \frac{6}{36} + 4 \times \frac{4}{36} + 5 \times \frac{2}{36} = \frac{35}{18}$
- (三) 根據題意,比賽只進行一次就結束了,表示第一次投擲時兩人之點數差為1或2或3或4或5(點數差不是0) $P(比賽只進行一次)=1-P(X=0)=1-\frac{6}{36}=\frac{5}{6}$
- (四) 根據顯意,甲於第二次投擲中贏得比賽,就表示第一次投出之點數差為0月第二次投出之點數差為1或2 P(甲於第二次投擲中贏得比賽) = $\frac{6}{36} \times (\frac{10}{36} + \frac{8}{36}) = \frac{1}{12}$

二、甲公司品管檢驗員抽驗該公司生產之燈泡 20 盒,得各盒不良品件數 X 的分配如下表所示:

X	0	1	2	3	4	5
盒數	1	8	5	3	2	1

105高點・高上公職 ・ 地方特考高分詳解

試求不良品件數的下列項目: (每小題5分,共25分)

- (一)平均數
- (二)中位數
- (三) 眾數
- (四)標準差
- (五)四分位距(Interquartile Range)

試題評析	本題是考敍述統計學,四等常考範圍,且也屬於基本計算,要拿到滿分並不難。
考點命中	《高點·高上統計學講義》第一回,趙治勳編撰,第三章。

答:

(一) 平均數 =
$$0 \times \frac{1}{20} + 1 \times \frac{8}{20} + 2 \times \frac{5}{20} + 3 \times \frac{3}{20} + 4 \times \frac{2}{20} + 5 \times \frac{1}{20} = 2$$

(二) 中位數 =
$$(X_{(\frac{N}{2})}, X_{(\frac{N}{2}+1)}) = (X_{(10)}, X_{(11)}) = (2, 2) = 2$$

(三) 眾數 = 1 (出現次數最多)
(四) 標準差 =
$$\sqrt{\frac{\sum x_i f_i - n\overline{X}^2}{n-1}} = \sqrt{\frac{112 - 20 \times 2^2}{20 - 1}} = 1.2978$$

其中
$$\sum x_i^2 f_i = 0^2 \times 1 + 1^2 \times 8 + 2^2 \times 5 + 3^2 \times 3 + 4^2 \times 2 + 5^2 \times 1 = 112$$

(
$$\pm$$
) $1 \times \frac{20}{4} = 5$ $Q_1 = \frac{X_{(5)} + X_{(6)}}{2} = \frac{1+1}{2} = 1$

$$3 \times \frac{20}{4} = 15$$
 $Q_3 = \frac{X_{(15)} + X_{(16)}}{2} = \frac{3+3}{2} = 3$

四分位距=
$$Q_3 - Q_1 = 3 - 1 = 2$$

- 三、捷運公司想了解民眾搭乘捷運上下班的情形,故隨機訪問了 160 位男士及 140 位女士,得知有 88 位男士及84 位女士搭乘捷運上下班。(每小題 5 分, 共 25 分)
 - (一)估計民眾搭乘捷運上下班的比例。
 - (二)在95%信心水準下,求男士搭乘捷運上下班比例的抽樣誤差。
 - (三)求女士搭乘捷運上下班比例的95%信賴區間。
 - (四)求男士與女士搭乘捷運上下班比例差的95%信賴區間。
 - (Δ) 在顯著水準 $\alpha = 0.05$ 下,利用(四)的結果,判斷男士與女士搭乘捷運上下班的比例是否有顯 著差異。

試題評析 本題是考兩獨立母體成功比例之信賴區間與假設檢定,屬於基本計算考題,要拿到高分並不難。 考點命中 │《高點・高上統計學講義》第四回,趙治勳編撰,第十一、十二章。

 $\Diamond X_1, X_2$ 分別表男士與女士為搭乘捷運上下班f,重製必究!】

母體: $X_1 \sim Ber(p_1) \perp X_2 \sim Ber(p_2)$ 假設 $X_1 \perp X_2$

樣本: $X_{11}, X_{12}, \dots, X_{1160} \stackrel{iid}{\sim} Ber(p_1)$

105高點・高上公職 ・ 地方特考高分詳解

$$X_{21}, X_{22}, \dots, X_{2140} \stackrel{iid}{\sim} Ber(p_2)$$

點估計:
$$\hat{p}_1 = \frac{\sum X_{1i}}{160} \sum_{byC.L.T.} N(p_1, \frac{p_1(1-p_1)}{160}) \perp \hat{p}_2 = \frac{\sum X_{2i}}{140} \sum_{byC.L.T.} N(p_2, \frac{p_2(1-p_2)}{140})$$

$$(-) \hat{p} = \frac{\sum X_{1i} + \sum X_{2i}}{160 + 140} = \frac{88 + 84}{160 + 140} = \frac{43}{75} = 0.5733$$

(二) **B** 表抽樣誤差

$$P(|\hat{p}_1 - p_1| \le B) = 0.95 \implies P(|Z| \le \frac{B}{\sqrt{\frac{p_1(1 - p_1)}{160}}}) = 0.95$$

$$\Rightarrow \frac{B}{\sqrt{\frac{p_1(1-p_1)}{160}}} = z_{0.025}$$

$$\Rightarrow B = z_{0.025} \sqrt{\frac{p_1(1-p_1)}{160}} \stackrel{p_1 \leftrightarrow \hat{p}_1 = \frac{88}{160}}{=} 1.96 \sqrt{\frac{\frac{88}{160}(1-\frac{88}{160})}{160}} = 0.0771$$

(三) 樞紐量:
$$\frac{\hat{p}_2 - p_2}{\sqrt{\frac{\hat{p}_2(1-\hat{p}_2)}{140}}} \sim N(0,1)$$

機率區間:
$$P(-z_{0.025} \le \frac{\hat{p}_2 - p_2}{\sqrt{\frac{\hat{p}_2(1-\hat{p}_2)}{140}}} \le z_{0.025}) = 0.95$$

結論: p_2 之95%信賴區間為

$$(\hat{p}_2 \mp z_{0.025} \sqrt{\frac{\hat{p}_2(1-\hat{p}_2)}{140}}) = (\frac{84}{140} \mp 1.96 \sqrt{\frac{84}{140} (1-\frac{84}{140})})$$
=(0.5188,0.6812)

(四) 樞紐量:
$$\frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{160} + \frac{\hat{p}_2(1 - \hat{p}_2)}{140}}} \sum_{byC.L.T.} N(0,1)$$

機率區間:
$$P(-z_{0.025} \le \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{160} + \frac{\hat{p}_2(1 - \hat{p}_2)}{140}}} \le z_{0.025}) = 0.95$$

105高點・高上公職 ・ 地方特考高分詳解

$$=((\frac{88}{160} - \frac{84}{140}) \mp 1.96\sqrt{\frac{\frac{88}{160}(1 - \frac{88}{160})}{160} + \frac{84}{140}(1 - \frac{84}{140})}) = (-0.1619, 0.0619)$$

 $(\Xi) \ H_0: p_1 = p_2 \ vs \ H_1: p_1 \neq p_2$

由於 p_1-p_2 之95% 信賴區間有包含0,故在顯著水準為5%下,採不拒絕 H_0 之決策。我們沒有足夠證據去推論 男士與女士搭乘捷運上下班之比例有差異。

- 四、已知一有限母體所含的數字為 $\{0,1,2,3,4\}$,以抽出不放回方式隨機抽取 2 個為一樣本,設 Xi 為 第 i 次抽出的數字,i=1,2, $\overline{X}=(X_1+X_2)/2$ 。
 - (-)試求 \bar{X} 的抽樣分配。(10分)
 - (二)利用(一)的結果,驗證 $E(\overline{X}) = \mu$,其中 μ 為母體平均數。(5分)
 - (三)利用(-)的結果,驗證 $V(\bar{X}) = \frac{N-n}{N-1} \frac{\sigma^2}{n}$,其中 N 為母體觀察值個數,n 為樣本數, σ^2 為母體變異數。 $(10 \, \bigcirc$

試題評析	本題是考抽樣分配,此類題型在考古題中也多次出現,課本例題也幾乎相同,要拿到滿分並不難。
考點命中	《高點·高上統計學講義》第四回,趙治勳編撰,第九章,例1(2)。

答:

樣本	\overline{X}	樣本	\overline{X}
0,1	0.5	1,3	2
0,2	1	1,4	2.5
0,3	1.5	2,3	2.5
0,4	2	2,4	3
1,2	1.5	3,4	3.5

$$(--$$

$\overline{X} = \overline{x}$	0.5	1	1.5	2	2.5	3	3.5
$f(\overline{y})$	1	1	2	2	2	1	1
$f_{\overline{X}}(\overline{X})$	10	10	10	10	$\overline{10}$	$\frac{1}{10}$	10

$$(\underline{})$$

$$\mu = \frac{0+1+2+3+4}{5} = 2$$
, $E(\overline{X}) = 0.5 \times \frac{1}{10} + 1 \times \frac{1}{10} + \dots + 3.5 \times \frac{1}{10} = 2$ 可得 $E(\overline{X}) = \mu$

$$(\Xi)$$